Queue - CSE205: Data Structures and Algorithms | B.Tech CSE Notes PDF | FineNotes4U


Queue


A queue is a linear data structure that follows the First-In-First-Out (FIFO) principle. 
It operates like a line where elements are added at one end (rear) and removed from the other end (front).

⭐Queue - Array Implementation:


CODE:

#include <iostream>
using namespace std;

class Queue {
    int front, rear, size;
    int *arr;

public:
    Queue(int s) {
        front = rear = -1;
        size = s;
        arr = new int[s];
    }

    // Enqueue operation
    void enqueue(int value) {
        if (rear == size - 1) {
            cout << "Queue is full" << endl;
            return;
        }
        else{
            if(front == -1){
                front = 0;
            }
            rear++;
            arr[rear] = value;
        }
    }

    // Dequeue operation
    void dequeue() {
        if (front == -1 || front > rear) {
            cout << "Queue is empty\n";
            return;
        }
        else{
            cout << "Dequeued: " << arr[front] << endl;
            front = front + 1;
        }
    }
    
    // Peek operation
    void peek() {
        if (front == -1 || front > rear) {
            cout << "Queue is empty\n";
            return;
        } 
        else {
            cout << "Front element is: " << arr[front];
        }
    }

    // Display operation
    void display() {
        if (front == -1 || front > rear) {
            cout << "Queue is empty\n";
            return;
        }
        else{
            cout << "Queue Elements are: ";
            for (int i = front; i <= rear; i++)
                cout << arr[i] << " ";
        }
        cout << endl;
    }
};

int main() {
    Queue q(5);
    
    q.enqueue(10);
    q.enqueue(20);
    q.enqueue(30);
    q.display();
    
    q.dequeue();
    q.display();
    
    q.peek();

    return 0;
}

OUTPUT:

Queue Elements are: 10 20 30 
Dequeued: 10
Queue Elements are: 20 30 
Front element is: 20

⭐Queue - Linked List Implementation:


CODE:

#include <iostream>
using namespace std;

struct Node {
    int data;
    Node* next;
};

class Queue {
    Node *front, *rear;

public:
    Queue() {
        front = rear = nullptr;
    }

    // Enqueue operation
    void enqueue(int value) {
        Node* temp = new Node();
        temp->data = value;
        temp->next = nullptr;
        if (rear == nullptr) {
            front = rear = temp;
        } 
        else {
            rear->next = temp;
            rear = temp;
        }
    }

    // Dequeue operation
    void dequeue() {
        if (front == nullptr) {
            cout << "Queue is empty\n";
            return;
        }
        Node* temp = front;
        front = front->next;
        if (front == nullptr){
            rear = nullptr;
        }
        int removed = temp->data;
        delete temp;
        cout << "Dequeued: " << removed << endl;
    }

    // Peek operation
    void peek() {
        if (front == nullptr) {
            cout << "Queue is empty\n";
            return;
        }
        cout << "Front element: " << front->data << endl;
    }

    // Print operation
    void print() {
        if (front == nullptr) {
            cout << "Queue is empty\n";
            return;
        }
        cout << "Queue elements are: ";
        Node* temp = front;
        while (temp != nullptr) {
            cout << temp->data << " ";
            temp = temp->next;
        }
        cout << "\n";
    }
};

int main() {
    Queue q;
    
    q.enqueue(10);
    q.enqueue(20);
    q.enqueue(30);
    q.print();
    
    q.dequeue();
    q.print();
    
    q.peek();

    return 0;
}

OUTPUT:

Queue elements are: 10 20 30 
Dequeued: 10
Queue elements are: 20 30 
Front element: 20

⭐Queue – Operations:

  • Enqueue() - Insertion of elements to the queue.
  • Dequeue() - Removal of elements from the queue.
  • Peek() - Acquires the data element available at the front node of the queue without deleting it.
  • isFull() - Validates if the queue is full.
  • isNull() - Checks if the queue is empty.

⭐Priority Queue:

  • A priority queue is a type of queue that arranges elements based on their  priority values
  • Elements with higher priority values are typically retrieved before elements with lower priority values.
  • Priority queue can be implemented using the following data structures:
    • Arrays
    • Linked list

CODE:

#include <iostream>
using namespace std;

struct Node {
    int value;
    int priority;
    Node* next;
};
Node* head = nullptr;

// Insertion
void insert(int value, int priority) {
    Node* newNode = new Node();
    newNode->value = value;
    newNode->priority = priority;
    newNode->next = nullptr;

    if (head == nullptr || head->priority < priority) {
        newNode->next = head;
        head = newNode;
    } 
    else {
        Node* current = head;
        while (current->next != nullptr && current->next->priority >= priority) {
            current = current->next;
        }
        
        newNode->next = current->next;
        current->next = newNode;
    }
}

// Deletion (removes the highest priority element)
Node deleteMax() {
    if (head == nullptr) {
        cout << "Queue is empty!" << endl;
        return {-1, -1, nullptr};
    }
    Node* temp = head;
    Node deleted = {head->value, head->priority, nullptr};
    head = head->next;
    delete temp;
    return deleted;
}

// Traversal
void traverse() {
    if (head == nullptr) {
        cout << "Queue is empty!" << endl;
        return;
    }
    Node* current = head;
    while (current != nullptr) {
        cout << "(" << current->value << ", " << current->priority << ") ";
        current = current->next;
    }
    cout << endl;
}

int main() {
    insert(10, 2);
    insert(30, 3);
    insert(20, 1);
    insert(40, 5);

    cout << "Priority Queue after insertions: ";
    traverse();

    Node deleted = deleteMax();
    cout << "Deleted max: (" << deleted.value << ", " << deleted.priority << ")" << endl;

    cout << "Priority Queue after deletion: ";
    traverse();

    return 0;
}

OUTPUT:

Priority Queue after insertions: (40, 5) (30, 3) (10, 2) (20, 1) 
Deleted max: (40, 5)
Priority Queue after deletion: (30, 3) (10, 2) (20, 1) 

⭐Difference between Priority Queue and Normal Queue:

  • There is no priority attached to elements in a queue, the rule of first-in-first-out(FIFO) is implemented whereas, in a priority queue, the elements have a priority.
  • The elements with higher priority are served first.

⭐Deque (Double-ended Queue):

  • A double-ended queue (deque) is an abstract data type that generalizes a queue, for which elements can be added to or removed from either the front or rear.

  • An input-restricted deque:
    • It is one where deletion can be made from both ends, but insertion can be made at one end only

  • Output-Restricted Deque: 
    • It is a deque with some limitations while performing deletion operations
  • Four basic operations are performed on deque, they are as follows:
    • Insertion at Rear
    • Insertion at Front
    • Deletion at Front
    • Deletion at Rear

CODE:

#include <iostream>
using namespace std;

// Global variables for deque
int* arr;
int front = -1;
int rear = 0;
int currentSize = 0;
int capacity;

// Function to insert an element at the front
void insertFront(int value) {
    if (currentSize == capacity) {
        cout << "Deque is full!" << endl;
        return;
    }
    front = (front + 1) % capacity;
    arr[front] = value;
    currentSize++;
    if (rear == 0) {
        rear = front;
    }
}

// Function to insert an element at the rear
void insertRear(int value) {
    if (currentSize == capacity) {
        cout << "Deque is full!" << endl;
        return;
    }
    rear = (rear - 1 + capacity) % capacity;
    arr[rear] = value;
    currentSize++;
    if (front == -1) {
        front = rear;
    }
}

// Function to delete an element from the front
void deleteFront() {
    if (currentSize == 0) {
        cout << "Deque is empty!" << endl;
        return;
    }
    front = (front - 1 + capacity) % capacity;
    currentSize--;
    if (currentSize == 0) {
        front = -1;
        rear = 0;
    }
}

// Function to delete an element from the rear
void deleteRear() {
    if (currentSize == 0) {
        cout << "Deque is empty!" << endl;
        return;
    }
    rear = (rear + 1) % capacity;
    currentSize--;
    if (currentSize == 0) {
        front = -1;
        rear = 0;
    }
}

// Function to display the deque elements
void display() {
    if (currentSize == 0) {
        cout << "Deque is empty!" << endl;
        return;
    }
    cout << "Deque elements: ";
    for (int i = 0; i < currentSize; i++) {
        cout << arr[(front - i + capacity) % capacity] << " ";
    }
    cout << endl;
}

int main() {
    capacity=5;

    arr = new int[capacity];

    insertRear(10);
    insertRear(20);
    insertFront(30);
    display();

    deleteFront();
    display();

    insertFront(40);
    insertRear(50);
    display();

    deleteRear();
    display();

    return 0;
}

OUTPUT:

Deque elements: 30 10 20 
Deque elements: 10 20 
Deque elements: 40 10 20 50 
Deque elements: 40 10 20 


🚨Thanks for visiting finenotes4u✨

Welcome to a hub for πŸ˜‡Nerds and knowledge seekers! Here, you'll find everything you need to stay updated on education, notes, books, and daily trends.

πŸ’— Bookmark our site to stay connected and never miss an update!

πŸ’Œ Have suggestions or need more content? Drop a comment below, and let us know what topics you'd like to see next! Your support means the world to us. 😍

Post a Comment

Previous Post Next Post