Stack - CSE205: Data Structures and Algorithms | B.Tech CSE Notes PDF | FineNotes4U


Stack


Stack is a linear data structure in which insertion & deletion is allowed at one end called top

The order may be LIFO(Last In First Out) or FILO(First In Last Out).

Stack Primary Operations:
  • push(data) - inserts data onto the Stack
  • pop() - deletes the last inserted element from the Stack

Stack Secondary Operations:
  • top() - returns the last inserted element without removing it
  • size() - returns the size or the number of elements in the stack
  • isEmpty() - returns TRUE if Stack is empty. Else returns FALSE
  • isFull() - returns TRUE is Stack is full. Else returns FALSE

⭐Using the Standard Template Library (STL) Stack:


CODE:

#include <iostream>
#include <stack>

int main() {
    std::stack<int> s;
    
    s.push(1);
    s.push(2);
    s.push(3);

    std::cout << "Top element: " << s.top() << std::endl;

    s.pop();
    std::cout << "Top element after pop: " << s.top() << std::endl;

    if (!s.empty()) {
        std::cout << "Stack is not empty." << std::endl;
    }

    std::cout << "Stack size: " << s.size() << std::endl;

    return 0;
}

OUTPUT:

Top element: 3
Top element after pop: 2
Stack is not empty.
Stack size: 2

⭐Array Implementation of Stack:


CODE:

#include <iostream>
using namespace std;

class Stack {
    int *arr;
    int top;
    int maxSize;

public:
    //initialize the stack
    Stack(int size) {
        maxSize = size;
        arr = new int[maxSize];
        top = -1;
    }

    //check empty or full
    bool isEmpty() {
        return top == -1;
    }
    bool isFull() {
        return top == maxSize - 1;
    }

    //Push (add to end)
    void push(int value) {
        if (isFull()) {
            std::cout << "Stack Overflow" << endl;
            return;
        }
        arr[++top] = value;
    }

    //Pop (remove from end)
    int pop() {
        if (isEmpty()) {
            std::cout << "Stack Underflow" << endl;
            return -1;
        }
        return arr[top--];
    }

    //Peek (check end) operations
    int peek() {
        if (isEmpty()) {
            std::cout << "Stack is empty" << endl;
            return -1;
        }
        return arr[top];
    }
};

int main() {
    int size;
    std::cin >> size;

    Stack stack(size);
    
    stack.push(10);
    stack.push(20);
    stack.push(30);
    stack.push(40);
    stack.push(50);
    
    stack.push(60);

    cout << "Top element is: " << stack.peek() << endl;
    cout << "Popped element: " << stack.pop() << endl;
    cout << "Top element is: " << stack.peek() << endl;

    return 0;
}

OUTPUT:

Stack Overflow
Top element is: 50
Popped element: 50
Top element is: 40

⭐Linked List Implementation of Stack:


CODE:

#include <iostream>
using namespace std;

class Node {
public:
    int data;
    Node *next;
    Node(int value) : data(value), next(nullptr) {}
};

class Stack {
private:
    Node *top;

public:
    Stack() : top(nullptr) {}

    bool isEmpty() {
        return top == nullptr;
    }

    //Push Operation:
    void push(int value) {
        Node *newNode = new Node(value);
        newNode->next = top;
        top = newNode;
    }

    //Pop Operation:
    int pop() {
        if (isEmpty()) {
            cout << "Stack Underflow" << endl;
            return -1;
        }
        int poppedValue = top->data;
        Node *temp = top;
        top = top->next;
        delete temp;
        return poppedValue;
    }

    //Peek Operation:
    int peek() {
        if (isEmpty()) {
            std::cout << "Stack is empty" << endl;
            return -1;
        }
        return top->data;
    }

    //Display Operation:
    void display(){
        if(top == nullptr){
            cout << "Stack is empty!" << endl;
            return;
        }
        Node *current = top;
        cout << "Stack element: ";
        while(current != nullptr){
            cout << current->data << " ";
            current = current->next;
        }
        cout << endl;
    }
};

int main() {
    Stack stack;
    
    stack.push(10);
    stack.push(20);
    stack.push(30);
    stack.push(40);
    stack.push(50);

    cout << "Top element is: " << stack.peek() << endl;
    cout << "Popped element: " << stack.pop() << endl;
    cout << "Top element is: " << stack.peek() << endl;

    stack.display();
    
    return 0;
}

OUTPUT:

Top element is: 50
Popped element: 50
Top element is: 40
Stack element: 40 30 20 10

⭐Stack - Polish Notation:


1) Types of Notations

  • Infix Notation: The operator is placed between operands (e.g., A + B).
  • Prefix Notation (Polish Notation): The operator is placed before its operands (e.g., + A B).
  • Postfix Notation (Reverse Polish Notation): The operator is placed after its operands (e.g., A B +).

2) Polish Notation

This is another term for prefix notation, where operators precede their operands. For example, the infix expression A + B is represented as + A B in prefix.

3) Reverse Polish Notation (RPN)

This is the same as postfix notation. It does not require parentheses to dictate order of operations, making it efficient for stack-based evaluation.

4) Evaluation of Postfix Expression

Example: Evaluate 5 3 4 * + 2 -.

Step-by-Step Evaluation:
  1. Read the expression from left to right.
  2. Push operands onto the stack.
  3. When an operator is encountered, pop the necessary number of operands from the stack, apply the operator, and push the result back.

Evaluation Steps:

  • 5 → Stack: [5]
  • 3 → Stack: [5, 3]
  • 4 → Stack: [5, 3, 4]
  • * → Pop 3 and 4, calculate 3 * 4 = 12, Stack: [5, 12]
  • + → Pop 5 and 12, calculate 5 + 12 = 17, Stack: [17]
  • 2 → Stack: [17, 2]
  • - → Pop 17 and 2, calculate 17 - 2 = 15, Stack: [15]

Final Result: 15


5) Conversion of an Infix Expression to Postfix Expression

Example: Convert A + B * C.

Step-by-Step Conversion:

  1. Use a stack to hold operators and output the operands.
  2. Output the operands directly to the result.
  3. Push the operators onto the stack, considering their precedence.

Conversion Steps:

  • Read A → Output: A
  • Read + → Push onto stack: Stack: [+]
  • Read B → Output: AB
  • Read * → Push onto stack (higher precedence): Stack: [*, +]
  • Read C → Output: ABC
  • Pop all operators from the stack → Output: ABC*+

6) Conversion of an Infix Expression to Prefix Expression

Example: Convert A + B * C.

Step-by-Step Conversion:

  1. Reverse the infix expression.
  2. Swap ( with ) and vice versa.
  3. Convert to postfix using the previously defined method.
  4. Reverse the resulting postfix expression to get the prefix.

Conversion Steps:

  • Reverse: C * B + A
  • Swap: C * B ) A (
  • Convert to postfix: CB*A+
  • Reverse: +A*BC


🚨Thanks for visiting finenotes4u✨

Welcome to a hub for πŸ˜‡Nerds and knowledge seekers! Here, you'll find everything you need to stay updated on education, notes, books, and daily trends.

πŸ’— Bookmark our site to stay connected and never miss an update!

πŸ’Œ Have suggestions or need more content? Drop a comment below, and let us know what topics you'd like to see next! Your support means the world to us. 😍

Post a Comment

Previous Post Next Post