Recursion - CSE205: Data Structures and Algorithms | B.Tech CSE Notes PDF | FineNotes4U


Recursion


A function that calls itself is known as a recursive function. This technique is known as recursion.

⭐Factorial of a Number:


CODE:

#include <iostream>
using namespace std;

int factorial (int n){
    if(n>1){
        return n * factorial(n - 1);
    }
    else{
        return 1;
    }
}

int main(){
    int n, result;
    n = 4;
    result = factorial(n);
    cout << result;
    return 0;
}

OUTPUT:

24

⭐Tower of Hanoi:


A few rules to be followed for Tower of Hanoi are:

  • Only one disk can be moved among the towers at any given time.
  • Only the 'top' disk can be removed.
  • No large disk can sit over a small disk
  • The minimal number of moves required to solve Tower of Hanoi puzzle of n disks would be (2^n) − 1.

CODE:

#include <iostream>
using namespace std;

void towerofHanoi(int n, char from_rod, char to_rod, char aux_rod){
    if (n==0){
        return;
    }
    towerofHanoi(n - 1, from_rod, aux_rod, to_rod);
    cout << "Move disk " << n << " from rod" << from_rod << " to rod " << to_rod << endl;
    towerofHanoi(n - 1, aux_rod, to_rod, from_rod);
}

int main(){
    int N=3;
    towerofHanoi(N, 'A', 'C', 'B');
    return 0;
}

OUTPUT:

Move disk 1 from rodA to rod C
Move disk 2 from rodA to rod B
Move disk 1 from rodC to rod B
Move disk 3 from rodA to rod C
Move disk 1 from rodB to rod A
Move disk 2 from rodB to rod C
Move disk 1 from rodA to rod C

Complexity Analysis:


Time Complexity: 
  • O(2N) There are two possibilities for every disk. 
  • Therefore, 2 * 2 * 2 * . . . * 2(N times) is 2N

Space Complexity: 
  • O(N), Function call Stack Space

⭐Merge Sort:


CODE:

#include <iostream>
using namespace std;

// Function to merge two halves
void merge(int A[], int start, int mid, int end) {
    int n1 = mid - start + 1;
    int n2 = end - mid;

    // Create temporary arrays
    int* left = new int[n1];
    int* right = new int[n2];

    // Copy data to temporary arrays
    for (int i = 0; i < n1; i++)
        left[i] = A[start + i];
    for (int j = 0; j < n2; j++)
        right[j] = A[mid + 1 + j];

    // Merge the temporary arrays back into A[start..end]
    int i = 0;
    int j = 0;
    int k = start;

    while (i < n1 && j < n2) {
        if (left[i] <= right[j]) {
            A[k] = left[i];
            i++;
        } else {
            A[k] = right[j];
            j++;
        }
        k++;
    }

    // Copy the remaining elements of left[], if any
    while (i < n1) {
        A[k] = left[i];
        i++;
        k++;
    }

    // Copy the remaining elements of right[], if any
    while (j < n2) {
        A[k] = right[j];
        j++;
        k++;
    }

    // Free the temporary arrays
    delete[] left;
    delete[] right;
}

// Merge Sort function
void merge_sort(int A[], int start, int end) {
    if (start < end) {
        int mid = (start + end) / 2;
        merge_sort(A, start, mid);
        merge_sort(A, mid + 1, end);
        merge(A, start, mid, end);
    }
}

// Function to print the array
void printArray(int A[], int size) {
    for (int i = 0; i < size; i++)
        cout << A[i] << " ";
    cout << endl;
}

int main() {
    int A[] = {38, 27, 43, 3, 9, 82, 10};
    int size = sizeof(A) / sizeof(A[0]);

    cout << "Original array: ";
    printArray(A, size);

    merge_sort(A, 0, size - 1);

    cout << "Sorted array: ";
    printArray(A, size);

    return 0;
}

OUTPUT:

Original array: 38 27 43 3 9 82 10 
Sorted array: 3 9 10 27 38 43 82

Complexity Analysis:


Time Complexity:
  • O(N log N), in all 3 cases (worst, average and best) as merge sort always divides the array into two halves and takes linear time to merge two halves.

Auxiliary Space:
  • O(N), in merge sort, all elements are copied into an auxiliary array. So, N auxiliary space is required.

⭐Quick Sort:


CODE:

#include <iostream>
using namespace std;

// Function to partition the array
int partition(int arr[], int low, int high, int pivot) {
    int i = low - 1;
    for (int j = low; j < high; j++) {
        if (arr[j] <= pivot) {
            i++; 
            swap(arr[i], arr[j]);
        }
    }
    swap(arr[i + 1], arr[high]);
    return i + 1;
}

// Quick Sort function
void quickSort(int arr[], int low, int high) {
    if (low < high) {
        int pivot = arr[high];
        int pos = partition(arr, low, high, pivot);
        quickSort(arr, low, pos - 1);
        quickSort(arr, pos + 1, high);
    }
}

// Function to print the array
void printArray(int arr[], int size) {
    for (int i = 0; i < size; i++)
        cout << arr[i] << " ";
    cout << endl;
}

int main() {
    int arr[] = {10, 7, 8, 9, 1, 5};
    int size = sizeof(arr) / sizeof(arr[0]);

    cout << "Original array: ";
    printArray(arr, size);

    quickSort(arr, 0, size - 1);

    cout << "Sorted array: ";
    printArray(arr, size);

    return 0;
}

OUTPUT:

Original array: 10 7 8 9 1 5 
Sorted array: 1 5 7 8 9 10

Complexity Analysis:


Time Complexity:
  • Best Case: ฮฉ (N log N)
  • Average Case: ฮธ ( N log N)
  • Worst Case: O(N^2)

Auxiliary Space:
  • O(1), if we don’t consider the recursive stack space. If we consider the recursive stack space, then, in the worst-case quick sort could make O(N).


๐ŸšจThanks for visiting finenotes4u✨

Welcome to a hub for ๐Ÿ˜‡Nerds and knowledge seekers! Here, you'll find everything you need to stay updated on education, notes, books, and daily trends.

๐Ÿ’— Bookmark our site to stay connected and never miss an update!

๐Ÿ’Œ Have suggestions or need more content? Drop a comment below, and let us know what topics you'd like to see next! Your support means the world to us. ๐Ÿ˜

Post a Comment

Previous Post Next Post