Trees - CSE205: Data Structures and Algorithms | B.Tech CSE Notes PDF | FineNotes4U


Trees


A tree is a non-linear hierarchical data structure that consists of nodes connected by edges.

⭐Tree Terminologies:


1) Node:

  • A node is an entity that contains a key or value and pointers to its child nodes.
  • The last nodes of each path are called leaf nodes or external nodes that do not contain a link/pointer to child nodes.
  • The node having at least a child node is called an internal node.

2) Edge:

  • It is the link between any two nodes.

3) Root:

  • It is the topmost node of a tree.

4) Height of a Node:

  • The height of a node is the number of edges from the node to the deepest leaf (ie. the longest path from the node to a leaf node).

5)Depth of a Node:

  • The depth of a node is the number of edges from the root to the node.

6)Height of a Tree:

  • The height of a Tree is the height of the root node or the depth of the deepest node.

7) Degree of a Node:

  • The degree of a node is the total number of branches of that node.

8) Forest:

  • A collection of disjoint trees is called a forest.

⭐Tree Types:


1) Binary Tree

  • Each node has up to two children: a left child and a right child.
  • No specific ordering of nodes.

2) Binary Search Tree (BST)

  • A binary tree with the property: left child < parent < right child.
  • Useful for fast searching, insertion, and deletion operations.

3) AVL Tree (Adelson-Velsky and Landis Tree)

  • A self-balancing binary search tree.
  • Balances itself by ensuring the heights of the left and right subtrees differ by no more than one.
  • Provides better time complexity for search, insertion, and deletion.

4) Heap (Binary Heap)

  • A complete binary tree where every parent node has a specific order relationship with its children.
  • Min-Heap: Parent nodes have values less than or equal to children.
  • Max-Heap: Parent nodes have values greater than or equal to children.
  • Used in priority queues and heapsort.

5) B-Tree

  • A self-balancing tree designed for systems that read and write large blocks of data, such as databases.
  • Nodes can have multiple children.
  • B-Trees are a generalization of binary search trees with higher "order," which allows more data per node.

6) B+ Tree

  • An extension of B-Tree where all values are stored in leaf nodes.
  • Leaf nodes are linked, providing sequential access.
  • Commonly used in database indexing and file systems.

⭐Binary Tree:

  • A binary tree is a tree data structure in which each parent node can have at most two children.
  • Root: The topmost node in the tree
  • Parent: A node with a child or children
  • Child: A node extended from another node (parent node)
  • Leaf: A node without a child

⭐Types of Binary Tree:


1) Full Binary Tree:

  • A full binary tree is a special type of binary tree in which every parent node/internal node has either two or no children.

2) Perfect Binary Tree:

  • A perfect binary tree is a type of binary tree in which every internal node has exactly two child nodes and all the leaf nodes are at the same level.

3) Complete Binary Tree:

  • A complete binary tree is just like a full binary tree, but with two major differences,
    • Every level must be completely filled
    • All the leaf elements must lean towards the left.
    • The last leaf element might not have a right sibling i.e. a complete binary tree doesn't have to be a full binary tree.

4) Degenerate or Pathological Tree:

  • A degenerate or pathological tree is the tree having a single child either left or right.

5) Skewed Binary Tree:

  • A skewed binary tree is a pathological/degenerate tree in which the tree is either  dominated by the left nodes or the right nodes.
  • There are two types of skewed binary tree
    • left-skewed binary tree
    • right-skewed binary tree

6) Balanced Binary Tree:

  • It is a type of binary tree in which the difference between the height of the left and the right subtree for each node is either 0 or 1.

⭐Binary Tree Representation:


CODE:

struct node{
    int data;
    struct node *left;
    struct node *right;
};

⭐Binary Tree - Array Representation:


  • Assigning of indexes is done in this way :
  • Index of parent = INT [index of child node / 2] 
  • Index of Left Child = 2 * Index of parent 
  • Index of Right Child = 2 * Index of parent + 1

⭐Binary Tree - Linked List Representation:

  • In a double linked list, every node consists of three fields. 
  • First field for storing left child address, 
  • Second for storing actual data and 
  • Third for storing right child address.

⭐Operations of Binary Tree Data Structure:

  • Create: Creates a tree in the data structure
  • Insert: Inserts data in a tree
  • Search: Searches specific data in a tree to check if it is present or not
  • Traversal:
    • Pre-order Traversal: perform Traveling a tree in a pre-order manner
    • In-order Traversal: perform Traveling a tree in an in-order manner
    • Post-order Traversal: perform Traveling a tree in a post-order manner

⭐Binary Trees: In-order Traversal:

  • follows the Left-Root-Right pattern
  • In-order traversal: Traverse left subtree → Visit root → Traverse right subtree

CODE:

#include <iostream>
using namespace std;

// Definition for a binary tree node.
struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;

    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};

// Function for in-order traversal using recursion
void inorderTraversal(TreeNode* root) {
    if (root == nullptr) {
        return;
    }
    inorderTraversal(root->left);
    cout << root->val << " ";
    inorderTraversal(root->right);
}

int main() {
    // Create a simple binary tree
    //       1
    //      / \
    //     2   3
    //    / \
    //   4   5

    TreeNode* root = new TreeNode(1);
    root->left = new TreeNode(2);
    root->right = new TreeNode(3);
    root->left->left = new TreeNode(4);
    root->left->right = new TreeNode(5);

    cout << "Inorder Traversal: ";
    inorderTraversal(root);
    cout << endl;

    return 0;
}

OUTPUT:

Inorder Traversal: 4 2 5 1 3

⭐Binary Trees: Pre-order Traversal:

  • follows the Root-Left-Right pattern
  • Pre-order traversal: Visit root → Traverse left subtree → Traverse right subtree

CODE:

#include <iostream>
using namespace std;

// Definition for a binary tree node.
struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;

    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};

// Function for preorder traversal using recursion
void preorderTraversal(TreeNode* root) {
    if (root == nullptr) {
        return;
    }
    cout << root->val << " ";
    preorderTraversal(root->left);
    preorderTraversal(root->right);
}

int main() {
    // Create a simple binary tree
    //       1
    //      / \
    //     2   3
    //    / \
    //   4   5

    TreeNode* root = new TreeNode(1);
    root->left = new TreeNode(2);
    root->right = new TreeNode(3);
    root->left->left = new TreeNode(4);
    root->left->right = new TreeNode(5);

    cout << "Preorder Traversal: ";
    preorderTraversal(root);
    cout << endl;

    return 0;
}

OUTPUT:

Preorder Traversal: 1 2 4 5 3 

⭐Binary Trees: Post-order Traversal:

  • follows the Left-Right-Root pattern
  • Post-order traversal: Traverse left subtree → Traverse right subtree → Visit root

CODE:

#include <iostream>
using namespace std;

// Definition for a binary tree node.
struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;

    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};

// Function for postorder traversal using recursion
void postorderTraversal(TreeNode* root) {
    if (root == nullptr) {
        return;
    }
    postorderTraversal(root->left); 
    postorderTraversal(root->right);  
    cout << root->val << " ";             
}

int main() {
    // Create a simple binary tree
    //       1
    //      / \
    //     2   3
    //    / \
    //   4   5

    TreeNode* root = new TreeNode(1);
    root->left = new TreeNode(2);
    root->right = new TreeNode(3);
    root->left->left = new TreeNode(4);
    root->left->right = new TreeNode(5);

    cout << "Postorder Traversal: ";
    postorderTraversal(root);
    cout << endl;

    return 0;
}

OUTPUT:

Postorder Traversal: 4 5 2 3 1 

⭐Binary Search Tree:

  • A Binary Search Tree (BST) is a type of binary tree in which the data is organized and stored in a sorted order.
  • every value on the left subtree < parent node < right subtree value.

CODE:

#include <iostream>
using namespace std;

// Node structure for a Binary Search Tree
struct Node {
    int data;
    Node* left;
    Node* right;
};

// Function to create a new Node
Node* createNode(int data){
    Node* newNode = new Node();
    newNode->data = data;
    newNode->left = newNode->right = nullptr;
    return newNode;
}

// Function to insert a node in the BST
Node* insertNode(Node* root, int data){
    if (root == nullptr) {
        return createNode(data);
    }

    if (data < root->data) {
        root->left = insertNode(root->left, data);
    }
    else if (data > root->data) {
        root->right = insertNode(root->right, data);
    }

    return root;
}

// Function to do inorder traversal of BST
void inorderTraversal(Node* root){
    if (root != nullptr) {
        inorderTraversal(root->left);
        cout << root->data << " ";
        inorderTraversal(root->right);
    }
}

// Function to search a given key in a given BST
Node* searchNode(Node* root, int key){
    if (root == nullptr || root->data == key) {
        return root;
    }

    if (root->data < key) {
        return searchNode(root->right, key);
    }

    return searchNode(root->left, key);
}

// Function to find the inorder successor
Node* minValueNode(Node* node){
    Node* current = node;
    while (current && current->left != nullptr) {
        current = current->left;
    }
    return current;
}

// Function to delete a node
Node* deleteNode(Node* root, int data){
    if (root == nullptr)
        return root;

    if (data < root->data) {
        root->left = deleteNode(root->left, data);
    }
    else if (data > root->data) {
        root->right = deleteNode(root->right, data);
    }
    else {
        if (root->left == nullptr) {
            Node* temp = root->right;
            delete root;
            return temp;
        }
        else if (root->right == nullptr) {
            Node* temp = root->left;
            delete root;
            return temp;
        }

        Node* temp = minValueNode(root->right);
        root->data = temp->data;
        root->right = deleteNode(root->right, temp->data);
    }

    return root;
}

int main(){

    Node* root = nullptr;

    // create a BST
    root = insertNode(root, 50);
    root = insertNode(root, 30);
    root = insertNode(root, 20);
    root = insertNode(root, 40);
    root = insertNode(root, 70);
    root = insertNode(root, 60);
    root = insertNode(root, 80);

    // Print the inorder traversal of a BST
    cout << "Inorder traversal of the given Binary Search "
            "Tree is: ";
    inorderTraversal(root);
    cout << endl;

    // delete a node in BST
    root = deleteNode(root, 20);
    cout << "After deletion of 20: ";
    inorderTraversal(root);
    cout << endl;

    // Insert a node in BST
    root = insertNode(root, 25);
    cout << "After insertion of 25: ";
    inorderTraversal(root);
    cout << endl;

    // Search a key in BST
    Node* found = searchNode(root, 25);

    // check if the key is found or not
    if (found != nullptr) {
        cout << "Node 25 found in the BST." << endl;
    }
    else {
        cout << "Node 25 not found in the BST." << endl;
    }

    return 0;
}

OUTPUT:

Inorder traversal of the given Binary Search Tree is: 20 30 40 50 60 70 80 
After deletion of 20: 30 40 50 60 70 80 
After insertion of 25: 25 30 40 50 60 70 80 
Node 25 found in the BST.


🚨Thanks for visiting finenotes4u✨

Welcome to a hub for πŸ˜‡Nerds and knowledge seekers! Here, you'll find everything you need to stay updated on education, notes, books, and daily trends.

πŸ’— Bookmark our site to stay connected and never miss an update!

πŸ’Œ Have suggestions or need more content? Drop a comment below, and let us know what topics you'd like to see next! Your support means the world to us. 😍

Post a Comment

Previous Post Next Post